If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-6x-8=0
a = 10; b = -6; c = -8;
Δ = b2-4ac
Δ = -62-4·10·(-8)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{89}}{2*10}=\frac{6-2\sqrt{89}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{89}}{2*10}=\frac{6+2\sqrt{89}}{20} $
| 7n^2+55n=-42 | | 11/2-x=1/10 | | (3/2)x+2-(1/2)x=(1/2) | | 4^5x+3=3^x+1 | | 2w2-3w-5=0 | | 7(3)^x-4=63 | | w2-3w-40=0 | | -5x-13=-40 | | z2-11z-24=0 | | 4x2-12x=7 | | 4z2+4z=-1 | | 2t+1=-1.0413 | | (3x)^-2/3=16 | | 2x^2/2^x=0 | | y2-5y-24=0 | | 2x^2/2^x=16^(3/2) | | -15x+29=5x-21 | | y2-12y-36=0 | | 11n−1=6n+19 | | 20-(0.75-s)8=6 | | q÷6=17 | | 1/3+2x/4=5 | | 1/3x-8=5/6x+4 | | -6(2c+4)-1=-2(c+5) | | x÷3-8=2 | | 2x2-10x-6=0 | | 86=2x-4(-4-3x) | | -6(3x+4)-3x=-9(2x+5)+23 | | 0.5(x)×(x)×(x)=32 | | 5(a-3)=3+5a-20 | | 59=9x-38 | | 59=9x-6 |